Nomenclature of Ketones and Aldehydes

IUPAC Names Systematic names of ketones are derived by replacing the final -e in the alkane name with -one. The "alkane" name becomes "alkanone." In open-chain ketones, we number the longest chain that includes the carbonyl carbon from the end closest to the carbonyl group, and we indicate the position of the carbonyl group by a number. In cyclic ketones, the carbonyl carbon atom is assigned the number 1.

$$CH_3 - CC - CC - CC + CC - CC + CC - CC + CC - CC + CC - CC$$

old IUPAC names in blue: new IUPAC names in green:

2-butanone butan-2-one

2,4-dimethyl-3-pentanone 2,4-dimethylpentan-3-one

3-methylcyclopentanone

2-cyclohexenone cyclohex-2-en-1-one

4-hydroxy-4-methyl-2-pentanone 4-hydroxy-4-methylpentan-2-one

Systematic names for aldehydes are derived by replacing the final -e of the alkane name with -al. An aldehyde carbon is at the end of a chain, so it is number 1. If the aldehyde group is a substituent of a large unit (usually a ring), the suffix carbaldehyde is used.

ethanal

4-bromo-3-methylheptanal

3-hydroxybutanal

$$CH_3$$
 $-CH_2$ $-CH$ $=$ CH $-CHC$

2-pentenal pent-2-enal

cyclohexanecarbaldehyde

2-hydroxycyclopentane-1-carbaldehyde

Priority of Functional Groups in Naming Organic Compounds

(highest)	acids
	esters
	aldehydes
	ketones
	alcohols
	amines
	alkenes, alkynes
	alkanes
	ethers
(lowest)	halides

A ketone or aldehyde group can also be named as a substituent on a molecule with a higher priority functional group as its root. A ketone or aldehyde carbonyl is named by the prefix oxo- if it is included as part of the longest chain in the root name. When an aldehyde -CHO group is a substituent and not part of the longest chain, it is named by the prefix formyl. Carboxylic acids frequently contain ketone or aldehyde groups named as substituents.

3-oxopentanal

2-formylbenzoic acid

3,4-dioxobutanoic acid

Ketones

Common Names As with other classes of compounds, ketones and aldehydes are often called by common names instead of their systematic IUPAC names. Ketone common names are formed by naming the two alkyl groups bonded to the carbonyl group. Substituent locations are given using Greek letters, beginning with the carbon *next to* the carbonyl group.

Some ketones have historical common names. Dimethyl ketone is always called *acetone*, and alkyl phenyl ketones are usually named as the acyl group followed by the suffix *-phenone*.

$$CH_3$$
 CH_3
 CH_3

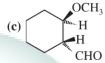
Common names of aldehydes are derived from the common names of the corresponding carboxylic acids (Table 18-2). These names often reflect the Latin or Greek term for the original source of the acid or the aldehyde. Greek letters are used with common names of aldehydes to give the locations of substituents. The first

TABLE 18-2 Common Names of Acids and Aldehydes Carboxylic Acid Derivation Aldehyde formica, "ants" OH formic acid formaldehyde (methanal) (methanoic acid) acetum, "sour" CH, -C OHacetic acid acetaldehyde (ethanoic acid) (ethanal) CH₃-CH₂protos pion, "first fat" CH₃-CH₂ propionaldehyde propionic acid (propanoic acid) (propanal) CH₃-CH₂-CH₂butyrum, "butter" CH3-CH2-CH2 butyric acid butyraldehyde (butanoic acid) (butanal) gum benzoin, "blending" OH benzoic acid benzaldehyde

letter (α) is given to the carbon atom *next to* the carbonyl group, which is C2 in the IUPAC name.

 $\begin{array}{c|c} \operatorname{OCH_3O} \\ \beta & \alpha \\ \operatorname{CH_3--CH--C--H} \end{array}$

Common name: IUPAC name:


β-bromobutyraldehyde 3-bromobutanal

α-methoxypropionaldehyde 2-methoxypropanal

PROBLEM 18-1

Give the IUPAC name and (if possible) a common name for each compound.

(a)
$$CH_3$$
— CH — CH_2 — C — CH_2 CH_3 (b) CH_3 — CCH_3

